

J. Acad. Indus. Res. Vol. 1(11) April 2013 661

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

 ISSN: 2278-5213

A hybrid approach for the prediction of fault proneness in object
oriented design using fuzzy logic

Rajinder Vir1* and P.S. Mann2

1Dept. of Computer Science, CT Institute of Engineering and Management Technology, Jalandhar
2Dept. of Information Technology, DAV Institute of Engineering and Technology, Jalandhar, India

jas4281@gmail.com*; psmaan@hotmail.com; +91 8427700837, 9888395367
__

Abstract
Empirical studies conducted by the researchers on object-oriented design metrics are useful for forecasting
the fault-proneness of classes in object-oriented design. In this study, we propose an integrated hybrid model
to empirically investigate the fault-proneness of object-oriented design. We will use a subset of the
Chidamber and Kemerer suite and all of the MOOD metrics to predict fault-proneness of object oriented
design. Moreover with the increasing demand for quality software there is an increase in metrics which can
measure OO attributes such as coupling, cohesion and inheritance. Therefore, there is a need for quality
models that investigate the association between these properties and quality attributes such as fault
proneness, maintainability, extendibility, effectiveness or productivity, to be able to use the metrics effectively
and efficiently. The aim of this study is to empirically investigate the association between object oriented
design metrics and fault proneness of object oriented systems.

Keywords: Object-oriented design metrics, fault-proneness, MOOD metrics, maintainability, extendibility.

Introduction
In today’s software advancement, environment object
oriented design and development is gaining a lot of
popularity among the researchers as it improves the
software productivity, reusability and flexibility of the
software. In object-oriented design, there are five key
structures that should be measured: classes, messages,
cohesion, coupling and inheritance. Measuring software
quality in the early stages of software development is
very necessary. Thus, it is the key to develop high quality
software when we measure the software quality in the
early stages of software development. A large number of
software metrics have been proposed in software
engineering to measure the quality attributes of the
software in early stages. Although various researchers
have proposed many metric suites to evaluate the OOD
quality, the best out of them are the CK metric suite
(Chidamber and Kemerer, 1994) and the MOOD metric
suite (Abreu and Carapua, 1994). Any of the metric
suites cannot alone reflect the quality of design.

Therefore, there is a need of an integrated hybrid
mechanism to combine them into a single output. Metrics
offer a mechanism for attaining more accurate
estimations of project milestones, and developing a
software system that contains minimal faults (Bellin et al.,
1994). With the help of metrics software engineers can
measure and predict software processes, necessary
resources for a project and products relevant for a
software development effort. Various kinds of object
oriented metrics are available and quite helpful in
obtaining information about the software quality and fault
proneness of the object oriented design.

In this study, we describe how we calculated the defect
index from CK metrics namely WMC, DIT, NOC and
MOOD metrics viz., MHF, AHF, AIF, MIF, CF and PF.
The two metric suites have been validated by Basili et al.
(1996). A large number of metrics have been proposed in
the past for so many years to confine the OO design,
code and constructs. These metrics provide ways to
assess the quality of software and their use in early
phases of software development which can help software
companies in evaluating large software development
quickly and at a reasonable cost (Aggarwal et al., 2005).
There have been large number empirical studies
evaluating the impact of OO metrics on faulty classes.
Saxena and Saini (2011) provided a review of all those
empirical studies from 1995 to 2010 to predict software
fault-proneness with a specific focus on techniques used.

Benlarbi et al. (1999) surveyed that the basic premise
behind the development of object oriented metrics is that
they can serve as early predictors of classes that contain
faults or that are closely maintain. They have shown that
size can have an important confounding effect on the
validity of object-oriented metrics. Khalsa (2009)
proposed an algorithm using fuzzy logic to measure fault
proneness and defect density of the software
development process and hence can be used to
minimize rework. Kamiya et al. (1999) proposed a new
method to estimate the fault-proneness of an object class
in the early phase, using several complexity metrics for
object-oriented software. Four checkpoints were
introduced in to the analysis/design/implementation
phase and estimates were done on the fault-prone
classes using applicable metrics at each checkpoint.

RESEARCH ARTICLE

J. Acad. Indus. Res. Vol. 1(11) April 2013 662

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

Menzies et al. (2003) compared Decision Trees, Naïve
Bayes, and 1-rule classifier on the NASA software defect
data. A clear trend was not observed and different
predictors scored better on different data sets. Malhotra
et al. (2010) built a Support vector machine (SVM) model
to find the relationship between object-oriented metrics
given by Chidamber and Kemerer and fault-proneness,
at different severity levels. Malhotra (2012) founded the
relation between object oriented metrics and
fault-proneness using logistic regression method.
The results were analyzed using open source software.
Further, the performance of the predicted models was
evaluated using receiver operating characteristic (ROC)
analysis.

Evaluating object oriented design quality means
identifying those design entities that are relevant for the
analysis of their properties and relationships that exist
between them. Measuring quality has been a major
challenge for the software development but there is a lack
of standards for measuring the quality. With the
increasing popularity of object oriented software
development, we need to investigate the object oriented
design metrics with respect to the software quality.
Since measuring the software quality early in the
development phases is the key to develop high quality
software system. According to McCall, following factors
have an effect on software quality (Fig. 1):
a. Direct factors (such as defect proneness)
b. Indirect factors (such as extendibility, effectiveness).

Fig. 1. McCall's quality factors (Pressman, 2011).

Metrics provide useful indicators to measure different
factors related to software quality and software
development process. Object oriented metrics are an
essential part of software development since they permit
the designers to software quality early in the process,
make appropriate changes that will reduce the
complexity, number of defects and improve the continuing
capability of the object oriented design (Abreu and
Carapua, 1994). Over the past years, a significant
number of object oriented metrics have been proposed by
Chidamber and Kemerer (1994), MOOD metrics
proposed by Abreu and Carapua (1994), Lorenz and Kidd
Metric (1994), QMOOD metrics by Bansiya and Davis
(2002) (Table 1-4). Out of these the CK metrics are the
most popular followed by MOOD metrics.

Table 2. MOOD Metric Suite (Abreu and Carapua, 1994).
Metric Description

Attribute
Inheritance
factor(AIF)

It is defined as the ratio of the sum of
inherited attributes in all classes of the
system.

Method
Inheritance
Factor(MIF)

The MIF metric states the sum of inherited
methods in all classes of the system under
consideration.

Attribute Hiding
Factor(AHF)

Measure how well attributes and properties
are encapsulated.

Method Hiding
Factor(MHF)

Measure how well methods and variables
are Encapsulated.

Polymorphism
factor(POF)

The POF represents the actual number of
possible different polymorphic situation

Coupling
Factor(COF)

It is defined as the ratio of the maximum
possible number of couplings in the system
to the actual number of coupling is not
imputable to inheritance

Table 4. Relationship between MOOD metrics and software
quality factors (Chandra and Linda, 2010).

Metric Software Quality Factor
WMC Complexity, Usability, Reusability
DIT Reusability, Understandability, Testability
NOC Design
LCOM Design, Reusability
CBO Design, Reusability
RFC Design, Usability, Testability

Table 1. CK Metric Suite (Chidamber and Kemerer, 1994).
Metric Description

Weighted Methods per
Class (WMC)

It defines the number of methods in
a certain class.

Depth of Inheritance Tree
(DIT)

It is a measure of how many
ancestor classes can potentially
affect a given class.

Number of Children
(NOC)

Number of direct subclasses that a
certain class contains.

Lack of Cohesion among
Methods (LCOM)

Number of disjunctive method pairs
of a certain class.

Coupling Between
Objects (CBO)

Number of coupling between a
certain class and all other classes.

Response For Class
(RFC)

Number of methods that can be
performed by a certain class in
response to a received message.

Table 3. Relationship between CK Metrics and software quality
factors (Rosenberg and Hyatt, 1997).

Metric Software Quality Factor
AIF Functionality, Effectiveness, Extendibility,

Defect Proneness
MIF Functionality, Effectiveness, Extendibility,

Defect Proneness
AHF Understandability, Complexity, Extendibility
MHF Understandability, Complexity, Extendibility
POF Complexity
COF Complexity, Reusability

J. Acad. Indus. Res. Vol. 1(11) April 2013 663

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

Research has shown that the CK Metric Suite does not
account for the complexity that occurs from the object
oriented design factors such as encapsulation and
polymorphism but the metrics proposed by Abreu are
able to measure the object oriented design aspects
properly (Subramanyam and Krishnan, 2003). The
metrics AHF and MHF measure the information hiding
aspects of the class, PF metrics measure the
polymorphism. Hence, we have used an integrated
hybrid model to measure the defect Proneness of the
object oriented systems. The work described in this study
focuses on the use of Object Oriented (OO) metrics in
predicting defect prone classes.

Software quality is controlled by many types of
uncertainties that occur during software development
process which makes it difficult for the designer to
evaluate the software quality. Various software quality
modes have been proposed over the recent years but
none of them proved to be simple, practical and widely
accepted. Since evaluating the quality of object oriented
design is a fuzzy evaluation process. Therefore to get an
accurate objective and empirical evaluation of the
software quality based on defect proneness, we will use
rule based fuzzy logic system proposed by Zadeh (1965)
to evaluate the defect proneness of the object oriented
software systems.

Fuzzy Logic is a technique used for modeling complex
systems (Zadeh, 1965). Since the real world is full of
vagueness fuzzy logic has proved to be very successful
in many areas such as decision support and expert
systems. Moreover, human reasons in fuzziness. Fuzzy
logic can be constructed either without any data or little
data which makes fuzzy logic superior over other data
driven approaches such as neural networks, regression
analysis and case based reasoning (Zadeh, 1965).
Researchers have successfully applied fuzzy logic in
software engineering disciplines such as effort
estimation, project management. For e.g. Gray and Mac
Donell developed a tool called Fulsome (Handa and
Wayal, 2012) (Fuzzy Logic for software metrics), Ryder
applied fuzzy logic to COCOMO and Function Point
models for making effort estimation (Bhatnagar et al.,
2010).

Materials and methods
Proposed model: The proposed model for calculating the
fault proneness uses a subset of CK metrics and MOOD
metrics (Fig. 2-6).
1. A fuzzy logic model FCD-CK (Fuzzy Controller for

defect – CK) is used to predict the Defect Index from
three of the CK metric (WMC, DIT and NOC) as these
three metrics of the CK metric suite are shown to be
very good predictors of defect proneness of object
oriented design and proved empirically
(Subramanyam and Krishnan, 2003). To get the
defect index, Mamdani fuzzy inference model is used.
The three inputs are fed into the fuzzy systems.

Depending upon the input values of the metric,
some rules out of the total 27 rules from the
knowledge base gets fired. The Mamdani
inference engine is used to determine the degree
of membership of firing. The technique used for
defuzzification is Centroid method.

Fig. 2. FCD-CK Fuzzy controller.

Fig. 3. Rule viewer for FCD-CK.

2. Another fuzzy model called FCD-MOOD is created
which uses six inputs of MOOD metrics. Similarly as
the above model is mentioned, rules from the
knowledge base are fired depending upon the input
values of the metrics. For MOOD metrics the Sugeno
inference engine is used to determine the degree of
membership of firing. We are proposing a hybrid
model for calculating the defect index for fault
proneness. The defuzzification technique used is
wtaver.

Fig. 4. FCD-MOOD Fuzzy controller.

J. Acad. Indus. Res. Vol. 1(11) April 2013 664

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

Fig. 5. Rule viewer for FCD-MOOD.

Fig. 6. Hybrid model.

Results
To perform the empirical investigation, we have used
project data set named KC1 available publicly from the
PROMISE data repository for validating the fuzzy
model-FCD-CK. To validate the second fuzzy model
using MOOD metrics we used various open source
software and project analyzer tool. After creating the rule
base to depict the true picture the results were obtained
as shown in the form of graphs in Figures 7 to 14.
The input data for the calculation of defect index is
derived from various open source software’s and the
PROMISE data repository. The values of all the metric is
computed with the help of PROJECT ANALYZER tool.
The FUZZY controller called FCD-CK and FCD-MOOD
were developed. The output value of the FCD_CK is
called DEFECT INDEX and that of FCD_MOOD is called
DEFECT PRONENESS.

Fig. 7. Graph for Defect Index vs. WMC.

Fig. 8. Graph for Defect Index vs. NOC.

Fig. 9. Graph for Defect Index vs. DIT.

Fig. 10. Graph for Defect Proneness vs. MHF.

Knowledge Base

Knowledge Base

AHF

AIF

MIF

POF

COF

MHF

Fu
zz

y
Sy

st
em

Su
ge

no
 In

fe
re

nc
e

Sy
st

em

De
fu

zz
ifi

ca
tio

n
Sy

st
em

DIT

NOC

WMC

Fu
zz

y
Sy

st
em

M
am

da
ni

 In
fe

re
nc

e
Sy

st
em

De
fu

zz
ifi

ca
tio

n
Sy

st
em

Combined Defect
Index

J. Acad. Indus. Res. Vol. 1(11) April 2013 665

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

Fig. 11. Graph for Defect Proneness vs. AIF.

Fig. 12. Graph for Defect Proneness vs.MIF.

Fig. 13. Graph for Defect Proneness vs. POF.

Fig. 14. Graph for Defect Proneness vs. COF.

Now, the combined defect index obtained from
MAMDANI and SUGENO based FUZZY controllers is
combined together to achieve the defect index as shown
in Table 5. From the values, it is clear that classes with
lesser value of defect index are less prone to faults as
compared to classes with higher value of defect index
and hence, they need to be reconsidered.

Conclusion
We have analyzed the performance of proposed model
using the fuzzy logic approach. The proposed model
includes the metrics given by Chidamber and Abreu
(1994). The model can be effectively used for predicting
the faulty classes in the early phases of SDLC which in
result minimize the effort of the software developers.
Hence, the model can help in improving the quality and
reducing faulty classes in the OOD early. The study can
be extended to deal with object oriented design
specifications. More combinations of the different
available metrics can be integrated depending upon the
requirements of the user. We used 3 metrics of CK and
6 metrics of MOOD metric suite, correlation of other
metrics can also be examined and they can also be used
to estimate the prediction of fault proneness. We used
fuzzy logic approach another approaches like neural
networks, case based systems can also be used to make
the system more effective. We can also find the solution
to other inconsistencies to which the solution has not
been proposed yet.

Table 5. Values of the output Metric (Defect Index Computed from the Hybrid model).

Metrics Source
Code 1

Source
Code 2

Source
Code 3

Source
Code 4

Source
Code 5

Source
Code 6

Source
Code 7

WMC 20 31 35 10 5.5 17 28
NOC 2 3 2 4 0 6 5
DIT 2 2 4 3 0 7 6
MHF 0.305 0.897 0.834 0 0.55 0 0
AHF 0.375 0.667 0.444 0.16 1 0.94 0.86
AIF 0.676 1 1 0.3 0 0.5 0.4
MIF 0.491 1 1 0 0 0.4 0.13
PF 0 0.8 1 0 0 0.8 0.4
CF 0.78 0.25 0.29 0.2 0 0.5 0.3
Defect_CK 1.0630 1.3739 1.4405 0.4116 0.3977 0.9253 1.3106
Defect_MOOD 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Hybrid_Defect 1.5630 1.8739 1.9405 0.9116 0.8977 1.4253 1.8106

J. Acad. Indus. Res. Vol. 1(11) April 2013 666

©Youth Education and Research Trust (YERT) Rajinder Vir & Mann, 2013

References
1. Abreu, F.B. and Carapua, R. 1994. Candidate metric for

OOS within taxonomy framework. J. Syst. Software. 26: 1.
2. Aggarwal, K.K., Singh, Y., Kaur, A. and Malhotra, R. 2005.

Software reuse metrics for object-oriented system. Proc. of
3rd ACIS Int. Conf. on software engineering research,
management and applications (SERA'05). IEEE Computer
Soc. pp.48-55.

3. Bansiya, J. and Davis, C.G. 2002. A hierarchical model for
object-oriented design quality assessment. IEEE Trans.
Software Engg. 28: 1.

4. Basili, V.R., Briand, L.C. and Melo, W.L. 1996. A validation
of object oriented design metrics as quality indicators.
IEEE Trans. on software engineering. 22(10): 751-761.

5. Bellin, D., Tyagi, M. and Tyler, M. 1994. Object-Oriented
metrics: An overview. Proc. of Conf. on advanced studies
on collaborative research (CASCON '94). p.4.

6. Benlarbi, S., Emam, K.E. and Geol, N. 1999. Issues in
validating object-oriented metrics for early risk prediction.
Proc. of 10th Int. Symp. on software reliability engineering
(ISSRE’99). Boca.

7. Bhatnagar, R., Bhattacharje, V. and Ghose, M.K.
2010. A proposed novel framework for early effort
estimation using fuzzy logic techniques. Global J. Comp.
Sci. Technol. 10: 14.

8. Chandra, E. and Linda, P.E. 2010. Assessment of software
quality through object oriented metrics. CIIT Int. J.
Software Engg. 2: 2.

9. Chidamber, S.R. and Kemerer, C.F. 1994. A metrics suite
for object oriented design. IEEE Trans. on software
engineering. 20(6): 476-493.

10. Dubey, S.K. and Rana, A. 2010. A comprehensive
assessment of object-oriented software systems using
metrics approach. IJCSE. 2: 2726-2730.

11. Handa, A. and Wayal, G. 2012. Software quality
enhancement using Fuzzy logic with object oriented
metrics in design. Int. J. Comp. Engg. Technol. (IJCET).
3(1): 169-179.

12. Kamiya, T., Kusumoto, S. and Inoue, K. 1999. Prediction of

fault-proneness at early phase in object-oriented
development. Proc. of 2nd IEEE Int. Symp. on object
oriented real-time distributed computing (ISORC '99).
pp.253-258.

13. Khalsa, S.K. 2009. A Fuzzified approach for the prediction
of fault proneness and defect density. Proc. of the World
Congress on Engineering. Vol. I. WCE 2009. July 1-3,
London, U.K.

14. Malhotra, R. 2012. A defect prediction model for open
source software. Proc. of the World Congress on
Engineering. Vol. II. July 4-6. London (UK).

15. Malhotra, R., Kaur, A. and Singh, Y. 2010. Empirical
validation of object-oriented metrics for predicting fault
proneness at different severity levels using support vector
machines. Int. J. Syst. Assurance Engg.
Management. 1(3): 269-281.

16. Menzies, T., Ammar, K., Nikora, A. and Stefano, S. 2003.
How simple is software defect prediction? J. Empirical
Software Engg. October.

17. Pressman, R.S. 2001. Software engineering-A
practitioner’s approach. McGraw-Hill international edition.
5th edition.

18. Rosenberg, L.H. and Hyatt, L. 1997. Software quality
metrics for object oriented environments. Crosstalk J.

19. Saxena, P. and Saini, M. 2011. Empirical studies to predict
fault proneness: A review. Int. J. Computer Appl. 22(8):
41-45.

20. Subramanyam, R. and Krishnan, M.S. 2003. Empirical
analysis of CK metrics for object-oriented design
complexity: Implications for software defects. IEEE Trans.
Software Engg. 29(4): 297-310.

21. Zadeh, L.A. 1965. Fuzzy sets, information and control.
8: 338-353.

